EosFP is a fluorescent protein from the coral Lobophyllia hemprichii that changes its fluorescence emission from green to red upon irradiation with near-UV light. Here we present the spectroscopic properties of wild-type EosFP and a variety of monomeric and dimeric mutants and provide a structural interpretation of its oligomerization and photoconversion, which is based on X-ray structure analysis of the green and red species that we reported recently. Because functional expression of the monomeric EosFP variant is limited to temperatures of 308C, we have developed a tandem dimer. This construct, in which two EosFP subunits are connected by a flexible 12 amino acid linker, expresses well after fusion with the androgen and endothelin A receptors at 37C. A variety of applications in cellular imaging, developmental biology and automated highcontent screening applications are presented, which demonstrate that EosFP is a powerful tool for in vivo monitoring of cellular processes.