The observation of the regulation of fast protein dynamics in a cellular context requires the development of reliable technologies. Here, a signal regulation cascade reliant on the stimulus-dependent acceleration of the bidirectional flow of mitogen-activated protein kinase (extracellular signalregulated kinase) across the nuclear envelope was visualized by reversible protein highlighting. Light-induced conversion between the bright and dark states of a monomeric fluorescent protein engineered from a novel coral protein was employed. Because of its photochromic properties, the protein could be highlighted, erased, and highlighted again in a nondestructive manner, allowing direct observation of regulated fast nucleocytoplasmic shuttling of key signaling molecules.